CMOS WAFER PREPARATION
BEFORE BONDING
Contents

• Rockwood wafer services

• Context
 – Customer’s outsourcing
 – Rockwood thinning flow

• Learning curve
 – Yield loss
 – Breakages
 – Ruling polishing pad lifespan

• Cases study
 – Investigating process issues
 – Microvoids
 – Tape waviness transfer
ROCKWOOD WAFER SERVICES
Rockwood Wafer Services

- Part of Rockwood Specialties Inc - A 4B$ US Listed Company
Rockwood Wafer Services

• Part of Rockwood Specialties Inc - A 4B$
 US Listed Company

• Located near Aix en Provence in France.
Rockwood Wafer Services

• Part of Rockwood Specialties Inc - A 4B$ US Listed Company

• Located near Aix en Provence in France.

• Diversified business in 2008
 – from only reclaim activities
 – to include Wafer Processing Services
 – which is now making a significant contribution to our business.
Rockwood Wafer Services

- Part of Rockwood Specialties Inc - A 4B$ US Listed Company

- Located near Aix en Provence in France.

- Diversified business in 2008
 - from only reclaim activities
 - to include Wafer Processing Services
 - which is now making a significant contribution to our business.

- Offering the following typical services
 - Thinning
 - Pre Packaging Grinding
 - SOI thinning.
 - Wafer carriers
 - Bonded wafers
 - Taiko Grinding.
 - Dicing (including DBG process)
 - Wafer re-sizing.
 - Wafer Edge trimming.
 - Polishing and cleaning
 - DSP
 - Bonding Surface preparation
 - And soon Wafer Bonding.
CONTEXT
Context

- **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• **Customer’s outsourcing**
 – Rockwood processes his customer’s CMOS wafers
 – Further used to build sensor
• **Customer’s outsourcing**
 – Rockwood processes his customer’s CMOS wafers
 – Further used to build sensor
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• **Customer’s outsourcing**

 – Rockwood processes his customer’s CMOS wafers
 – Further used to build sensor

![Diagram showing processing of individual CMOS wafers](image-url)
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
- Rockwood processes his customer’s CMOS wafers
- Further used to build sensor

Context

Customer’s outsourcing

Rockwood's fab (+ subcontractors)
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• **Customer’s outsourcing**
 - Rockwood processes his customer’s CMOS wafers
 - Further used to build sensor
• Rockwood Thinning flow
• **Rockwood Thinning flow**

 - **INSPECTION – Thickness meas.**
 - Final clean room
 - **ADC Si substrate (> 700 µm)**
• **Rockwood Thinning flow**

 INSPECTION – Thickness meas.
 Final clean room

 TAPING
 Cleanroom 100

 ADC Si substrate (> 700 µm)

 ADC Si substrate (> 700 µm)

 To protect CMOS side & make the handling safer
• Rockwood Thinning flow

INSPECTION – Thickness meas.
Final clean room

TAPPING
Cleanroom 100

GRINDING (→ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

ADC Si substrate (> 700 µm)

To protect CMOS side & make the handling safer

The wafer is highly warped and the surface damaged
• **Rockwood Thinning flow**

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

GRINDING (→ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING (→ 200 - 400 µm) + clean
2 steps: bulk + final polish

ADC Si substrate (> 700 µm)

To protect CMOS side & make the handling safer

The wafer is highly warped and the surface damaged

ADC Si substrate

ADC Si substrate (> 700 µm)
• **Rockwood Thinning flow**

- **INSPECTION** – Thickness meas.
 Final clean room

- **TAPING**
 Cleanroom 100

- **GRINDING** (→ 200 - 400 µm)
 Cleanroom 10000
 2 steps: rough + fine wheel

- **POLISHING** (→ 200 - 400 µm) + clean
 2 steps: bulk + final polish

- **DE TAPING**
 CMP / Cleanroom (100)

ADC Si substrate (> 700 µm)

To protect CMOS side & make the handling safer

The wafer is highly warped and the surface damaged

ADC Si substrate

ADC Si substrate

ADC Si substrate (> 700 µm)
Context

- **Rockwood Thinning flow**

 - **INSPECTION** – Thickness meas.
 Final clean room
 - **TAPING**
 Cleanroom 100
 - **GRINDING** (➔ 200 - 400 µm)
 Cleanroom 10000
 2 steps: rough + fine wheel
 - **POLISHING** (➔ 200 - 400 µm) + clean
 2 steps: bulk + final polish
 - **DE TAPING**
 CMP / Cleanroom (100)
 - **FINAL CLEAN & INSPECTION**
 Final clean room (1 – 10)

ADC Si substrate (> 700 µm)

ADC Si substrate

To protect CMOS side & make the handling safer

The wafer is highly warped and the surface damaged

ADC Si substrate

ADC Si substrate
• **Rockwood Thinning flow**

INSPECTION – Thickness meas.
- Final clean room

TAPING
- Cleanroom 100

GRINDING (→ 200 - 400 µm)
- Cleanroom 10000
- 2 steps: rough + fine wheel

POLISHING (→ 200 - 400 µm) + clean
- 2 steps: bulk + final polish

DE TAPING
- CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
- Final clean room (1 – 10)

PACKING & SHIPPING

ADC Si substrate (> 700 µm)

To protect CMOS side & make the handling safer

The wafer is highly warped and the surface damaged

ADC Si substrate
• **Rockwood Thinning flow**

- **INSPECTION** – Thickness meas.
 Final clean room

- **TAPING**
 Cleanroom 100

- **GRINDING** (→ 200 - 400 µm)
 Cleanroom 10000
 2 steps: rough + fine wheel

- **POLISHING** (→ 200 - 400 µm) + clean
 2 steps: bulk + final polish

- **DE TAPING**
 CMP / Cleanroom (100)

- **FINAL CLEAN & INSPECTION**
 Final clean room (1 – 10)

- **PACKING & SHIPPING**

- ADC Si substrate (> 700 µm)
- To protect CMOS side & make the handling safer
- The wafer is highly warped and the surface damaged
- Next step: bonding on customer’s equipment
Product yield, breakage yield

LEARNING CURVE
Learning

- Yield
Learning

• **Yield**
 - Customer’s data
Learning

• **Yield**
 – Customer’s data
 – « Yield loss » = $\frac{bad\ dies}{total\ dies}$ (per wafer, per batch)
Learning

• **Yield**
 – Customer’s data
 – « Yield loss » = *bad dies / total dies* (per wafer, per batch)
 – Overlay of C-SAM, electrical measurements, defect measurements
• **Yield**
 - Customer’s data
 - « Yield loss » = \(\frac{\text{bad dies}}{\text{total dies}} \) (per wafer, per batch)
 - Overlay of C-SAM, electrical measurements, defect measurements

![Batch average Yield loss (range box)](image-url)
• **Yield**
 – Customer’s data
 – “Yield loss” = bad dies / total dies (per wafer, per batch)
 – Overlay of C-SAM, electrical measurements, defect measurements

Out of 3 production months during ramp up phase

→ ~ only 25% with yield loss < 10%
Learning

- **Yield**
 - Customer’s data
 - « Yield loss » = *bad dies / total dies* (per wafer, per batch)
 - Overlay of C-SAM, electrical measurements, defect measurements

Out of 3 production months during ramp up phase
→ ~ only 25% with yield loss < 10%

Out of 3 production months 1 year later
→ ~95%
Learning curve

- Ruling pad lifespan
Learning curve

• Ruling pad lifespan

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

THINNING (→ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING (→ 200 -400 µm) + clean
2 steps: bulk + final polish

DE TAPING
CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
Final clean room (1 – 10)
• Ruling pad lifespan

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

THINNING (➔ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING (➔ 200 -400 µm) + clean
2 steps: bulk + final polish

DE TAPING
CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
Final clean room (1 – 10)
- Ruling pad lifespan

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

THINNING (→ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING (→ 200 -400 µm) + clean
2 steps: bulk + final polish

DE TAPING
CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
Final clean room (1 – 10)

Step 1: bulk polishing
Defect removal, Roughness ~nm

Step 2: Final polishing
Roughness ~A
Learning curve

• Ruling pad lifespan

- **INSPECTION – Thickness meas.**
 Final clean room

- **TAPING**
 Cleanroom 100

- **THINNING (→ 200 - 400 µm)**
 Cleanroom 10000
 2 steps: rough + fine wheel

- **POLISHING (→ 200 - 400 µm) + clean**
 2 steps: bulk + final polish

- **DE TAPING**
 CMP / Cleanroom (100)

- **FINAL CLEAN & INSPECTION**
 Final clean room (1 – 10)
Learning curve

- **Ruling pad lifespan**

 INSPECTION – Thickness meas.
 Final clean room

 TAPING
 Cleanroom 100

 THINNING (⇒ 200 - 400 µm)
 Cleanroom 10000
 2 steps: rough + fine wheel

 POLISHING (⇒ 200 -400 µm) + clean
 2 steps: bulk + final polish

 DE TAPING
 CMP / Cleanroom (100)

 FINAL CLEAN & INSPECTION
 Final clean room (1 – 10)

\[T_0: \text{ process set up and frozen with qualification lots (few)} \]
• Ruling pad lifespan

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

THINNING ($\rightarrow 200 - 400 \, \mu m$)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING ($\rightarrow 200 - 400 \, \mu m$) + clean
2 steps: bulk + final polish

DE TAPING
CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
Final clean room (1 – 10)

T_0: process set up and frozen with qualification lots (few)

Ramp up phase: what about lifespan of consumables?
• Ruling pad lifespan

INSPECTION – Thickness meas.
Final clean room

TAPING
Cleanroom 100

THINNING (→ 200 - 400 µm)
Cleanroom 10000
2 steps: rough + fine wheel

POLISHING (→ 200 -400 µm) + clean
2 steps: bulk + final polish

DE TAPING
CMP / Cleanroom (100)

FINAL CLEAN & INSPECTION
Final clean room (1 – 10)

\[T_0: \text{ process set up and frozen with qualification lots (few)} \]

Ramp up phase : what about lifespan of consumables ?

\[\rightarrow \text{ Technical driver: polishing quality vs time} \]
Learning curve

- Ruling pad lifespan
Learning curve

• **Ruling pad lifespan**
 – Plot of lot yield loss versus consumables information
Learning curve

• **Ruling pad lifespan**
 – Plot of lot yield loss versus consumables information
 • Polishing insert lifespan
Learning curve

- **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
Learning curve

• **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 • Polishing insert lifespan
 • Polishing pad preparation conditions
 • Polishing pad lifespan (pad step#1 & pad step #2)
Learning curve

• **Ruling pad lifespan**
 – Plot of lot yield loss versus consumables information
 • Polishing insert lifespan
 • Polishing pad preparation conditions
 • Polishing pad lifespan (pad step#1 & pad step #2)
 • Etc..
Learning curve

• **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
 - Polishing pad lifespan (pad step#1 & pad step #2)
 - Etc..
 - And the winner is…pad lifespan on polishing step #2
Ruling pad lifespan

- Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
 - Polishing pad lifespan (pad step#1 & pad step #2)
 - Etc..
- And the winner is…pad lifespan on polishing step #2

Learning curve

High degradation rate vs std reclaim polishing process

Average yield loss

Mid lifetime

Number of processed hours vs std reclaim lifespan
Learning curve

- **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
 - Polishing pad lifespan (pad step#1 & pad step #2)
 - Etc..
 - And the winner is... pad lifespan on polishing step #2

![Graph showing yield loss versus number of processed hours](image)

- **High degradation rate vs std reclaim polishing process**
- **More likely due to higher wearing rate as caused by sharp edge of thin wafers**
Learning curve

- **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
 - Polishing pad lifespan (pad step #1 & pad step #2)
 - Etc..
 - And the winner is… pad lifespan on polishing step #2

![Graph showing yield loss versus number of processed hours vs mid lifetime](image-url)
Learning curve

• **Ruling pad lifespan**
 - Plot of lot yield loss versus consumables information
 - Polishing insert lifespan
 - Polishing pad preparation conditions
 - Polishing pad lifespan (pad step #1 & pad step #2)
 - Etc..
 - And the winner is…pad lifespan on polishing step #2
Experimental data

CASES STUDY
Case study #1

INVESTIGATING PROCESS ISSUES
Case study #1: investigating process issues

• 1: wafer handling issue on polishing tool
Case study #1: investigating process issues

• 1: wafer handling issue on polishing tool
 – Quality alert from the customer (< 4 % of the production)
Case study #1: investigating process issues

• 1: wafer handling issue on polishing tool
 - Quality alert from the customer (< 4 % of the production)
 - Investigations
Case study #1: investigating process issues

• 1: wafer handling issue on polishing tool
 – Quality alert from the customer (< 4 % of the production)
 – Investigations
 • Sometimes at the end of the polishing cycle the wafer stay “sticked” onto the polishing pad, which is impregnated with slurry
 • Local chemical etching by the basic slurry: the pad groove pattern is “printed” on the wafer
Case study #1: investigating process issues

1: wafer handling issue on polishing tool

- Quality alert from the customer (< 4 % of the production)
- Investigations
 - Sometimes at the end of the polishing cycle the wafer stay “sticked” onto the polishing pad, which is impregnated with slurry
 - Local chemical etching by the basic slurry: the pad groove pattern is “printed” on the wafer
Case study #1: investigating process issues

1: wafer handling issue on polishing tool

- Quality alert from the customer (< 4% of the production)
- Investigations
 - Sometimes at the end of the polishing cycle the wafer stay “sticked” onto the polishing pad, which is impregnated with slurry
 - Local chemical etching by the basic slurry: the pad groove pattern is “printed” on the wafer

→ The problem has been fixed
 Use of vacuum to hold the wafer
Case study #2

MICROVOIDS
Case study #2: microvoids
Case study #2: microvoids

- Microvoids
Case study #2: microvoids

- **Microvoids**
 - Defect located at the bonding interface
Case study #2: microvoids

• **Microvoids**
 – Defect located at the bonding interface
 – Small unbonded areas (<0.01 mm²)
Case study #2: microvoids

• **Microvoids**
 - Defect located at the bonding interface
 - Small unbonded areas (<0.01 mm²)
 - Preferably located at the edge of the wafer
Case study #2: microvoids

- **Microvoids**
 - Defect located at the bonding interface
 - Small unbonded areas (<0.01 mm²)
 - Preferably located at the edge of the wafer
 - Major yield detractor: 1 microvoid → 1 lost die
Case study #2: microvoids

- **Microvoids**
 - Defect located at the bonding interface
 - Small unbonded areas (<0.01 mm²)
 - Preferably located at the edge of the wafer
 - Major yield detractor: 1 microvoid → 1 lost die

- **Characterization**
Case study #2: microvoids

• **Microvoids**
 – Defect located at the bonding interface
 – Small unbonded areas (<0.01 mm²)
 – Preferably located at the edge of the wafer
 – Major yield detractor: 1 microvoid → 1 lost die

• **Characterization**
 – C-SAM & Mic
Case study #3: microvoids

- **Characterization**
 - Profilometry
Case study #3: microvoids

• **Characterization**
 – Profilometry
 • Manufacturing of low adhesion bonded wafers
Case study #3: microvoids

- **Characterization**
 - Profilometry
 - Manufacturing of low adhesion bonded wafers
 - Wafer mapping (microvoids localization)
Case study #3: microvoids

- Characterization
 - Profilometry
 - Manufacturing of low adhesion bonded wafers
 - Wafer mapping (microvoids localization)
 - Debonding of the pair of wafers
Case study #3: microvoids

- **Characterization**
 - Profilometry
 - Manufacturing of low adhesion bonded wafers
 - Wafer mapping (microvoids localization)
 - Debonding of the pair of wafers
 - Profile on the CMOS wafer
Case study #3: microvoids

• **Characterization**
 – Profilometry
 • Manufacturing of low adhesion bonded wafers
 • Wafer mapping (microvoids localization)
 • Debonding of the pair of wafers
 • Profile on the CMOS wafer
 → Crater like defect
Case study #3: microvoids

• **Characterization**
 – Profilometry
 • Manufacturing of low adhesion bonded wafers
 • Wafer mapping (microvoids localization)
 • Debonding of the pair of wafers
 • Profile on the CMOS wafer
→ Crater like defect
~ 100 µm wide,
Case study #3: microvoids

• **Characterization**
 – Profilometry
 • Manufacturing of low adhesion bonded wafers
 • Wafer mapping (microvoids localization)
 • Debonding of the pair of wafers
 • Profile on the CMOS wafer
→ Crater like defect
~ 100 µm wide,
~10nm depression /~6nm elevated ring
Case study #2: microvoids
Case study #2: microvoids

- Microvoids counts vs process deviations
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)
Case study #2: microvoids

• Microvoids counts vs process deviations
 – Microvoids count = number of microvoids / wafer, batch

• DOE on PRIME wafers (still ongoing)
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch

- **DOE on PRIME wafers (still ongoing)**
 - Influence of the silicon raw material
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)
 - Influence of the silicon raw material
 - Depth variation

Location of the final thin wafer into the original PRIME wafers

<table>
<thead>
<tr>
<th>Original PRIME wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin wafer</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)
 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch

- **DOE on PRIME wafers (still ongoing)**

 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch

- **DOE on PRIME wafers (still ongoing)**

 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)

No clear trend: uneven occurrence of microvoids
Case study #2: microvoids

• Microvoids counts vs process deviations
 – Microvoids count = number of microvoids / wafer, batch

• DOE on PRIME wafers (still ongoing)
 – Influence of the silicon raw material
 • Depth variation
 • Type of silicon (CZ, FZ)
 – Thermal treatment (w, w/o)

No clear trend: uneven occurrence of microvoids
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)
 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)

 No clear trend: uneven occurrence of microvoids

- Grinding amount
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch

- **DOE on PRIME wafers (still ongoing)**
 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)
 - Grinding amount
 - Increased polishing removals

No clear trend: uneven occurrence of microvoids
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)

 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)

 - Grinding amount
 - Increased polishing removals
 - Clean (modified cleaning/drying sequence)

No clear trend: uneven occurrence of microvoids
Case study #2: microvoids

- **Microvoids counts vs process deviations**
 - Microvoids count = number of microvoids / wafer, batch

- **DOE on PRIME wafers (still ongoing)**
 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)
 - Grinding amount
 - Increased polishing removals
 - Clean (modified cleaning/drying sequence)

No clear trend: uneven occurrence of microvoids
Case study #2: microvoids

- Microvoids counts vs process deviations
 - Microvoids count = number of microvoids / wafer, batch

- DOE on PRIME wafers (still ongoing)
 - Influence of the silicon raw material
 - Depth variation
 - Type of silicon (CZ, FZ)
 - Thermal treatment (w, w/o)

- No clear trend: uneven occurrence of microvoids

- CMOS PROCESS
 - Grinding amount
 - Increased polishing removals
 - Clean (modified cleaning/drying sequence)
 - Type of tape

- CMOS Thinning

- No clear trend: uneven occurrence of microvoids
Case study #3

TAPE WAVINESS TRANSFER
Case study #3: tape waviness transfer

- Final visual inspection on thin wafers
Case study #3: tape waviness transfer

- Final visual inspection on thin wafers
Case study #3: tape waviness transfer

- **Final visual inspection on thin wafers**
Case study #3: tape waviness transfer

• **Final visual inspection on thin wafers**
 - Wafer warpage: lamp not straight but curved
Case study #3: tape waviness transfer

• **Final visual inspection on thin wafers**
 - Wafer warpage: lamp not straight but curved
 - Reflection is not mirror-like.
 • small “waves” topography on the polished surface
 • mostly random pattern
 • with main direction
Case study #3: tape waviness transfer

• **Final visual inspection on thin wafers**

 – Wafer warpage: lamp not straight but curved
 – Reflection is not mirror-like.
 • small “waves” topography on the polished surface
 • mostly random pattern
 • with main direction
Case study #3: tape waviness transfer

- **Final visual inspection on thin wafers**
 - Wafer warpage: lamp not straight but curved
 - Reflection is not mirror-like.
 - Small “waves” topography on the polished surface
 - Mostly random pattern
 - With main direction

\[H = \sim 500 - 800 \text{ nm} \]
\[W = 10 - 15 \text{ mm} \]
\[W/H = 12000 \rightarrow 30000 \]

Profile

Thin wafer (thinned side)
Case study #3: tape waviness transfer

- Investigation
Case study #3: tape waviness transfer

• **Investigation**
 – Finally focused on 1 step: tape deposition
Case study #3: tape waviness transfer

• **Investigation**
 – Finally focused on 1 step: tape deposition
 • wafer is moved under a roller
Case study #3: tape waviness transfer

• **Investigation**
 – Finally focused on 1 step: tape deposition
 • wafer is moved under a roller
 • Ensuring uniform pressure
Case study #3: tape waviness transfer

• **Investigation**
 – Finally focused on 1 step: tape deposition
 • wafer is moved under a roller
 • Ensuring uniform pressure
 – Demonstration
 • Virgin silicon wafers, 3 taping conditions
 • Std thinning, inspection
Case study #3: tape waviness transfer

• Investigation
 – Finally focused on 1 step: tape deposition
 • wafer is moved under a roller
 • Ensuring uniform pressure
 – Demonstration
 • Virgin silicon wafers, 3 taping conditions
 • Std thinning, inspection

Hologenix – YIS 150
(light deflectivity)
Case study #3: tape waviness transfer

Investigation
- Finally focused on 1 step: tape deposition
 - Wafer is moved under a roller
 - Ensuring uniform pressure
- Demonstration
 - Virgin silicon wafers, 3 taping conditions
 - Std thinning, inspection

Hologenix – YIS 150 (light deflectivity)
Case study #3: tape waviness transfer

Investigation
- Finally focused on 1 step: tape deposition
 - wafer is moved under a roller
 - Ensuring uniform pressure
- Demonstration
 - Virgin silicon wafers, 3 taping conditions
 - Std thinning, inspection

Hologenix – YIS 150 (light deflectivity)
Case study #3: tape waviness transfer

• **Investigation**
 - Finally focused on 1 step: tape deposition
 - wafer is moved under a roller
 - Ensuring uniform pressure
 - Demonstration
 - Virgin silicon wafers, 3 taping conditions
 - Std thinning, inspection

\[\text{No tape} \]

Wave pattern is confirmed (shape and orientation) → tape dependent
Case study #3: tape waviness transfer

- Any impact on microvoids?
Case study #3: tape waviness transfer

• **Any impact on microvoids?**
Case study #3: tape waviness transfer

- Any impact on microvoids?
Case study #3: tape waviness transfer

- Any impact on microvoids?

BONDING with tape

Bonding w/o tape

Top wafer
Bottom wafer
Case study #3: tape waviness transfer

- Any impact on microvoids?

BONDING with tape

Top wafer
Bottom wafer

Bonding w/o tape

Top wafer
Bottom wafer
TO CONCLUDE
To conclude

- Successful cooperation with CMOS fab
- Enabling
 - Production of sensor with consistent yield though a complex supply chain
 - New technology for our customer
- Building of depth of experience for Rockwood
- Thin wafer (200 µm – 450 µm) processing: tradeoff
 - w/o temporary carrier → fewer thermal and cleaning limitations
 - w/o sacrificial carrier → cheaper
 - But breakage occurrences
THANK YOU